hre

Statement of Verification

BREG EN EPD No.: 000620

This is to verify that the

Environmental Product Declaration

provided by:

Architectural Panel Solutions Ltd

is in accordance with the requirements of:

EN 15804:2012+A2:2019

and **BRE Global Scheme Document SD207**

This declaration is for: 1kg of Petrarch rainscreen cladding panel

Company Address

Architectural Panel Solutions Ltd Unit 5, Wainwright Close Hastings, St Leonards on Sea East Sussex **TN38 9PP**

DP ates

Signed for BRE Global Ltd

Deep Patel Operator

05 August 2024 Date of this Issue

04 August 2029

Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms. To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us. BRE Global Ltd., Garston, Watford WD25 9XX. T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enquiries@breglobal.com

VERIFIED

BF1805-C-ECOP Rev 0.3

Page 1 of 17

© BRE Global Ltd, 2022

FPD

Issue 01

Environmental Product Declaration

EPD Number: 000620

General Information

EPD Programme Operator	Applicable Product Category Rules			
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE 2023 Product Category Rules (PN 514 Rev 3.1) for Type III environmental product declaration of construction products to EN 15804:2012+A2:2019.			
Commissioner of LCA study	LCA consultant/Tool			
Architectural Panel Solutions Ltd Unit 5, Wainwright Close Hastings, St Leonards on Sea East Sussex TN38 9PP	Consultant: Juan Barato, Architectural Panel Solutions Ltd Tool: BRE Lina A2			
Declared/Functional Unit	Applicability/Coverage			
1kg of Petrarch rainscreen cladding panel	Other (please specify). Product specific			
ЕРД Туре	Background database			
Cradle to Gate with Module C and D	Ecoinvent 3.8			
Cradle to Gate with Module C and D Demonstra	Ecoinvent 3.8			
Cradle to Gate with Module C and D Demonstra CEN standard EN 15	Ecoinvent 3.8 tion of Verification 5804 serves as the core PCR ^a			
Cradle to Gate with Module C and D Demonstra CEN standard EN 15 Independent verification of the declara	Ecoinvent 3.8 ation of Verification 5804 serves as the core PCR ^a ation and data according to EN ISO 14025:2010 ⊠ External			
Cradle to Gate with Module C and D Demonstra CEN standard EN 15 Independent verification of the declara Unternal (Where appropring Jiacher)	Ecoinvent 3.8 ation of Verification 5804 serves as the core PCR ^a ation and data according to EN ISO 14025:2010 External riate ^b)Third party verifier: eng (Francis) Yu			
Cradle to Gate with Module C and D Demonstra CEN standard EN 15 Independent verification of the declara Independent verification of the declara (Where appropriation a: Product category rules b: Optional for business-to-business communication; mandatory	Ecoinvent 3.8 ation of Verification 5804 serves as the core PCR ^a ation and data according to EN ISO 14025:2010			
Cradle to Gate with Module C and D Demonstra CEN standard EN 15 Independent verification of the declara Internal (Where appropriate declara) (Where appropriate declara) (Where appropriate declara) (Where appropriate declara) (Co	Ecoinvent 3.8 ation of Verification 5804 serves as the core PCR a ation and data according to EN ISO 14025:2010			

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A2:2019. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A2:2019 for further guidance.

Information modules covered

						Use stage											Benefits and loads bevond
	Produc	t	Const	ruction	Rel	ated to	the bui	ilding fa	ıbric	Relat the bu	ted to uilding		End-of-life			the system boundary	
A1	A2	A3	A4	A5	B1	B2	B 3	B4	B5	B6	B7	C1	C2	C3	C4		D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal		Reuse, Recovery and/or Recycling potential
$\overline{\mathbf{A}}$	\checkmark	V										V	\checkmark	\checkmark	\checkmark		V

Note: Ticks indicate the Information Modules declared.

Manufacturing site(s)

Architectural Panel Solutions Ltd Unit 5, Wainwright Close Hastings, St Leonards on Sea East Sussex TN38 9PP

Construction Product:

Product Description

Petrarch Rainscreen Cladding Panel is created primarily from natural by-product materials such as stone and marble. A bespoke thermoset polymer-based and woven glass fibre reinforcement result in a durable panel with high strength and impact resistant. Petrarch has been designed and installed as a rainscreen cladding system with either open or closed joints. Panels can be fixed to the supporting wall using suitable rainscreen cladding support systems made of wood or metal.

Petrarch panels are available in standard nominal 7 and 10mm thicknesses, with dimensions of 3040 x 1210mm and 2430 x 1210mm. They come in four surface finishes: smooth standard, smooth matt, riven standard, and riven matt, and are offered in multiple colors, including a color matching service. The composition is similar across all product groups; therefore, the total production data of Petrarch rainscreen cladding panels has been calculated for 1 kg, allowing the end user to determine the impacts for different panel sizes.

Panel Thickness	Kg/m²
7mm	15.7
10mm	22
Density	2240 kg/m ³

Fixing options:

- Mechanical Secret Fix (panel hangers)
- Adhesive Secret Fix
- Visible Fix (rivets to metal subframe or screws to timber battens)

Technical Information

Property	Value, Unit
Flexural Strength EN 14617-2:2016	>25MPa
Modulus of elasticity EN 14617-2:2016	>11,000 MPa
Freeze-Thaw EN 14617-5:2016	No significant loss in performance
Density	2240 kg/m ³

Note: Technical properties of all the panels assessed within this EPD.

Main Product Contents

Material/Chemical Input	%
Marble & Stone fillers	35-65
Fire Retardant	12-40
Bespoke Thermoset Polymer	15-18
Glass fibre	5-6
Pigments	0-3
Additives	0-1

Note: Main product contents of all the panels assessed within this EPD.

Manufacturing Process

Petrarch cladding boards are manufactured in the UK based factory in Hastings.

1. Each panel's unique colour recipe is weighed and mixed to create a malleable mixture that is poured onto a conveyor belt.

2. The mixture then passes through a series of rollers, each with a specific and very important task to achieve an even surface while reducing the thickness.

3. Once the required thickness is obtained, an automated mechanism activates, and the "blanket" is cut to the standard production length.

4. These "blankets" will then be transferred to a pressure chamber where a mould is applied under a specific temperature, pressure and time.

EPD Number: 000620	
BF1805-C-ECOP Rev 0.2	

5. The boards will come out of this process with rough edges but already with Petrarch intrinsic strength properties. In-house visual and mechanical tests will be carried out to ensure product quality.

The following steps are dependent on finish and fabrication required:

• Standard finish - edge trimming to square the panels up.

• Matt finish - shotblast process followed by edge trimming.

Following the above processes, Petrarch panels are ready for either in-house fabrication (cutting, drilling, etc.) or can be shipped out for on-site fabrication.

Any production product waste (shotblasting, scrap, offcuts, etc), packaging and line cleaning waste is handled, stored, and disposed of according to current regulations.

Process flow diagram

Date of Issue:05 August 2024 Page 5 of 17

Construction Installation

Petrarch can be visible fixed (rivets or screws), adhesive secret fixed, or mechanical secret fixed (panel hangers with anchors) back to either a metal or wood subframe.

Use Information

Maintenance will not normally be required but, when necessary, cleaning can be carried out following manufacturer guidance.

End of Life

At the end of the product service life, the panels can be removed and may be reused on a different location within the same or another building. However, in the most of the scenario's panels will be recycled at its end of life. The method of deconstruction will vary dependent on panel installation method.

Visible fixed panels - Removal of panel is carried out using an electric drill or screwdriver by loosening the mechanical fixing (rivet or screw) to remove the panel.

Adhesive secret fixed panels - Removal of panel is carried out using mechanical cutting tools (sharp blade, handsaw, etc) or a cutting wire with handles to cut through the adhesive.

Mechanical secret fixed (hook on) - This installation method uses panel hangers affixed to the back of the panels, which will securely hook onto a horizontal carrier rail. To ensure stability, each panel has a fixed-point hanger (secured with a locking screw) positioned in the top row. Removal of panel is carried out using a screwdriver to loosen the locking screw on each panel, to then lift and remove the panel. Removal of panels must be done from top to bottom to get access to the locking screw.

Therefore, the demolition approach employed for the panels will vary considerably on a site-by-site basis due to its dependence on numerous factors, such as construction methodology, local geography, and panel installation. However, it can be safely assumed that the energy required for deconstructing the panels compared to the overall demolition will be effectively negligible.

Life Cycle Assessment Calculation Rules

Declared / Functional unit description

1kg of Petrarch rainscreen cladding panel.

System boundary

This is a cradle-to-gate with modules C and D LCA, reporting all production life cycle stages of modules A1 to A3 and end of life stages C1-C4, and D in accordance with EN 15804:2012+A2:2019 and BRE 2023 Product Category Rules (PN 514 Rev 3.1).

Data sources, quality and allocation

The quantity used in the data collection for this EPD is the total quantity of Petrarch Rainscreen cladding panel manufactured during the data collection period (01/01/22-31/12/22). The original data collection form has been used while doing an LCA analysis, there was a no uplift in the given data. Architectural Panel Solutions manufactures other products in addition to Petrarch rainscreen cladding panel therefore the allocation of fuel consumption, water consumption & discharge, and waste emissions are required, and this has been done according to the provisions of the BRE PCR PN514 and EN 15804 i.e., by using the mass allocation. Secondary data has been obtained for all other upstream and downstream processes that are beyond the control of the manufacturer (i.e., raw material production) from the Ecoinvent 3.8 database. All Ecoinvent datasets are complete within the context used and conform to the system boundary and the criteria for the exclusion of inputs and outputs, according to the requirements specified in EN15804.

ISO14044 guidance. Quality Level	Geographical representativeness	Technical representativeness	Time representativeness
Very Good	Data from area under study.	Data from processes and products under study. Same state of technology applied as defined in goal and scope (i.e., identical technology).	n/a
Very Good	n/a	n/a	There is approximately 1-2 years between the Ecoinvent LCI reference year, and the time period for which the LCA was undertaken.

Specific UK and European have been selected from the Ecoinvent LCI for this LCA. Manufacturer uses the national grid electricity and natural gas for production, so therefore the most recent consumption mix has been used for the LCA modelling (Ecoinvent 3.8). The GWP carbon footprint for using 1 kWh of electricity, GB kWh is 0.239 kgCO2e/kWh and for using the 1 kWh of Natural gas (the UK) is 0.232 kgCO2eq. The quality level of time representativeness is also Very Good as the background LCI datasets are based on ecoinvent v3.8 which was compiled in 2021. Therefore, there is less than 5 years between the ecoinvent LCI reference year and the time period for which the LCA was undertaken

Cut-off criteria

All raw materials and energy input to the manufacturing process have been included, except for direct emissions to air, water, and soil, which are not measured. The inventory process in this LCA includes all data related to raw material, packaging material and consumable items. Process energy, process waste, water use, and discharge are included.

EPD Number: 000620Date of Issue:05 August 2024Expiry Date 04 August 20BF1805-C-ECOP Rev 0.2Page 7 of 17© BRE Global Ltd, 20	EPD Number: 000620	Date of Issue:05 August 2024	Expiry Date 04 August 2029
	BF1805-C-ECOP Rev 0.2	Page 7 of 17	© BRE Global Ltd, 2022

hre

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated) Parameters describing environmental impacts

		GWP- total	GWP- fossil	GWP- biogenic	GWP- Iuluc	ODP	AP	EP- freshwat er	
			kg CO₂ eq	kg CO₂ eq	kg CO₂ eq	kg CO ₂ eq	kg CFC11 eq	mol H⁺ eq	kg (PO ₄) ³⁻ eq
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG	AGG
	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG	AGG
Product stage	Manufacturing	A3	AGG	AGG	AGG	AGG	AGG	AGG	AGG
	Total (Consumption grid)	A1-3	2.38E+00	2.21E+00	1.50E-01	1.33E-03	2.57E-07	1.17E-02	1.57E-03
Construction	Transport	A4	MND	MND	MND	MND	MND	MND	MND
process stage	Construction	A5	MND	MND	MND	MND	MND	MND	MND
	Use	B1	MND	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND	MND	MND
	Repair	B3	MND	MND	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND	MND	MND	MND
90% Recycling and	10% Landfill								
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	8.32E-03	8.31E-03	7.08E-06	3.26E-06	1.92E-09	3.37E-05	5.35E-07
	Waste processing	C3	-3.62E-03	-3.62E-03	-1.28E-06	-3.61E-07	-7.73E-10	-3.76E-05	-1.12E-07
	Disposal	C4	1.06E-03	1.05E-03	8.10E-06	1.07E-06	3.20E-10	8.88E-06	3.06E-07
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-7.58E-03	-7.47E-03	-9.67E-05	-1.05E-05	-6.02E-10	-4.81E-05	-4.07E-06

GWP-total = Global warming potential, total;

GWP-fossil = Global warming potential, fossil; GWP-biogenic = Global warming potential, biogenic;

GWP-luluc = Global warming potential, land use and land use change;

ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, accumulated exceedance; and EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing environmental impacts										
			EP- marine	EP- terrestrial	POCP	ADP- mineral&m etals	ADP-fossil	WDP	PM	
			kg N eq	mol N eq	kg NMVOC eq	kg Sb eq	MJ, net calorific value	m ³ world eq deprived	disease incidence	
Draduat	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG	AGG	
	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG	AGG	
stage	Manufacturing	A3	AGG	AGG	AGG	AGG	AGG	AGG	AGG	
	Total (Consumption grid)	A1-3	2.65E-03	2.58E-02	7.90E-03	1.13E-02	3.25E+01	1.04E+00	1.26E-07	
Construction	Transport	A4	MND	MND	MND	MND	MND	MND	MND	
process stage	Construction	A5	MND	MND	MND	MND	MND	MND	MND	
	Use	B1	MND	MND	MND	MND	MND	MND	MND	
	Maintenance	B2	MND	MND	MND	MND	MND	MND	MND	
	Repair	B3	MND	MND	MND	MND	MND	MND	MND	
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND	MND	
	Refurbishment	B5	MND	MND	MND	MND	MND	MND	MND	
	Operational energy use	B6	MND	MND	MND	MND	MND	MND	MND	
	Operational water use	B7	MND	MND	MND	MND	MND	MND	MND	
90% Recyclin	g and 10% Landf	ill								
	Deconstructio n, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Final of life	Transport	C2	1.02E-05	1.11E-04	3.40E-05	2.89E-08	1.26E-01	5.65E-04	7.17E-10	
End of life	Waste processing	C3	-1.66E-05	-1.82E-04	-5.01E-05	-1.86E-09	-4.96E-02	-1.15E-04	-7.70E-09	
	Disposal	C4	3.06E-06	3.33E-05	9.64E-06	3.44E-09	2.47E-02	1.11E-03	1.78E-10	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-1.11E-05	-1.33E-04	-3.44E-05	-7.06E-08	-1.10E-01	-1.44E-02	-6.07E-10	

EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, accumulated

exceedance;

POCP = Formation potential of tropospheric ozone;

ADP-mineral&metals = Abiotic depletion potential for non-fossil resources;

ADP-fossil = Depletion potential of the stratospheric ozone layer; WDP = Water (user) deprivation potential, deprivation-weighted water consumption; and PM = Particulate matter.

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing environmental impacts									
			IRP	ETP-fw	HTP-c	HTP-nc	SQP		
			kBq U ²³⁵ eq	CTUe	CTUh	CTUh	dimensionless		
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG		
	Transport	A2	AGG	AGG	AGG	AGG	AGG		
Product stage	Manufacturing	A3	AGG	AGG	AGG	AGG	AGG		
	Total (Consumption grid)	A1-3	1.80E-01	1.52E+02	3.35E-09	9.61E-08	1.14E+01		
Construction	Transport	A4	MND	MND	MND	MND	MND		
process stage	Construction	A5	MND	MND	MND	MND	MND		
	Use	B1	MND	MND	MND	MND	MND		
	Maintenance	B2	MND	MND	MND	MND	MND		
	Repair	B3	MND	MND	MND	MND	MND		
Use stage	Replacement	B4	MND	MND	MND	MND	MND		
	Refurbishment	B5	MND	MND	MND	MND	MND		
	Operational energy use	B6	MND	MND	MND	MND	MND		
	Operational water use	B7	MND	MND	MND	MND	MND		
90% Recycling and	10% Landfill								
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	Transport	C2	6.46E-04	9.81E-02	3.18E-12	1.03E-10	8.63E-02		
End of life	Waste processing	C3	-2.24E-04	-2.90E-02	-1.12E-12	-2.10E-11	-6.32E-03		
	Disposal	C4	1.17E-04	1.76E-02	7.58E-13	1.18E-11	5.92E-02		
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-1.70E-03	-1.27E-01	-7.39E-12	-1.34E-10	-1.01E-01		

IRP = Potential human exposure efficiency relative to U235; ETP-fw = Potential comparative toxic unit for ecosystems; HTP-c = Potential comparative toxic unit for humans; HTP-nc = Potential comparative toxic unit for humans; and SQP = Potential soil quality index.

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing resource use, primary energy											
			PERE	PERM	PERT	PENRE	PENRM	PENRT			
			MJ	MJ	MJ	MJ	MJ	MJ			
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG			
	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG			
Product stage	Manufacturing	A3	AGG	AGG	AGG	AGG	AGG	AGG			
	Total (Consumption grid)	A1-3	4.14E-01	1.80E+00	2.21E+00	2.83E+01	5.81E+00	3.41E+01			
Construction	Transport	A4	MND	MND	MND	MND	MND	MND			
process stage	Construction	A5	MND	MND	MND	MND	MND	MND			
	Use	B1	MND	MND	MND	MND	MND	MND			
	Maintenance	B2	MND	MND	MND	MND	MND	MND			
	Repair	В3	MND	MND	MND	MND	MND	MND			
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND			
	Refurbishment	B5	MND	MND	MND	MND	MND	MND			
	Operational energy use	B6	MND	MND	MND	MND	MND	MND			
	Operational water use	B7	MND	MND	MND	MND	MND	MND			
90% Recycling and	10% Landfill										
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Final of life	Transport	C2	1.77E-03	0.00E+00	1.77E-03	1.23E-01	0.00E+00	1.23E-01			
Ena of life	Waste processing	C3	2.78E-04	0.00E+00	2.78E-04	4.87E-02	0.00E+00	4.87E-02			
	Disposal	C4	4.22E-04	0.00E+00	4.22E-04	2.43E-02	0.00E+00	2.43E-02			
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-1.03E-02	0.00E+00	-1.03E-02	-1.10E-01	0.00E+00	-1.10E-01			

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials; PERM = Use of renewable primary energy resources used as raw

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing resource use, secondary materials and fuels, use of water						
		SM	RSF	NRSF	FW	
		kg	MJ net calorific value	MJ net calorific value	m ³	
	Raw material supply	A1	AGG	AGG	AGG	AGG
	Transport	A2	AGG	AGG	AGG	AGG
Product stage	Manufacturing	A3	AGG	AGG	AGG	AGG
	Total (Consumption grid)	A1-3	5.46E-03	1.30E-06	0.00E+00	2.49E-02
Construction	Transport	A4	MND	MND	MND	MND
process stage	Construction	A5	MND	MND	MND	MND
	Use	B1	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND
	Repair	B3	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND
90% Recycling and 10% Landfill						
End of life	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Transport	C2	0.00E+00	0.00E+00	0.00E+00	1.40E-05
	Waste processing	C3	1.91E-05	0.00E+00	0.00E+00	-2.83E-06
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	2.62E-05
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	-3.39E-04

SM = Use of secondary material; RSF = Use of renewable secondary fuels;

NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Other environmental information describing waste categories					
			HWD	NHWD	RWD
		kg	kg	kg	
	Raw material supply	A1	AGG	AGG	AGG
	Transport	A2	AGG	AGG	AGG
Product stage	Manufacturing	A3	AGG	AGG	AGG
	Total (Consumption grid)	A1-3	5.08E-01	6.64E+00	8.16E-05
Construction	Transport	A4	MND	MND	MND
process stage	Construction	A5	MND	MND	MND
Use stage	Use	B1	MND	MND	MND
	Maintenance	B2	MND	MND	MND
	Repair	В3	MND	MND	MND
	Replacement	B4	MND	MND	MND
	Refurbishment	B5	MND	MND	MND
	Operational energy use	B6	MND	MND	MND
	Operational water use	B7	MND	MND	MND
90% Recycling and 10% Landfill					
End of life	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00
	Transport	C2	1.39E-04	2.46E-03	8.50E-07
	Waste processing	C3	6.51E-05	4.57E-04	3.43E-07
	Disposal	C4	4.80E-05	1.01E-01	1.48E-07
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-6.33E-04	-1.93E-02	-5.62E-07

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed;

RWD = Radioactive waste disposed

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Other environmental information describing output nows – at end of the								
			CRU	MFR	MER	EE	Biogenic carbon (product)	Biogenic carbon (packaging)
			kg	kg	kg	MJ per energy carrier	kg C	kg C
	Raw material supply	A1	AGG	AGG	AGG	AGG	AGG	AGG
	Transport	A2	AGG	AGG	AGG	AGG	AGG	AGG
Product stage	Manufacturing	A3	AGG	AGG	AGG	AGG	AGG	AGG
	Total (Consumption grid)	A1-3	0.00E+00	8.94E-02	1.21E-08	1.09E-03	0.00E+00	-9.05E-03
Construction	Transport	A4	MND	MND	MND	MND	MND	MND
process stage	Construction	A5	MND	MND	MND	MND	MND	MND
	Use	B1	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND	MND
	Repair	В3	MND	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND	MND	MND
90% Recycling and 10% Landfill								
End of life	Deconstruction, demolition	C1	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
	Transport	C2	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
	Waste processing	C3	0.00E+0	9.00E-01	0.00E+0	0.00E+0	0.00E+0	0.00E+0
	Disposal	C4	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EE = Exported Energy

Scenarios and additional technical information

Scenarios and additional technical information						
Scenario	Parameter	Units	Results			
	At the end of the product service life, the panels can be removed and may be reused on a different location within the same or another building. However, in most scenarios panel cannot reach its 100% durability and will be recycled at its end of life.					
	The method of deconstruction will vary dependent on panel	installation method				
	Visible fixed panels - Removal of panel is carried out usin loosening the mechanical fixing (rivet or screw) to remove the	g an electric drill o ne panel.	r screwdriver by			
	Adhesive secret fixed panels - Removal of panel is carried out using mechanical cutting tools (sharp blade, handsaw, etc) or a cutting wire with handles to cut through the adhesive.					
C1 - Deconstruction	Mechanical secret fixed (hook on) - This installation method uses panel hangers affixed to the back of the panels, which will securely hook onto a horizontal carrier rail. To ensure stability, each panel has a fixed-point hanger (secured with a locking screw) positioned in the top row. Removal of panel is carried out using a screwdriver to loosen the locking screw on each panel, to then lift and remove the panel. Removal of panels must be done from top to bottom to get access to the locking screw.					
	Therefore, the demolition approach employed for the panels will vary considerably on a site-by- site basis due to its dependence on numerous factors, such as construction methodology, local geography, and panel installation. However, it can be safely assumed that the energy required for deconstructing the panels compared to the overall demolition will be effectively negligible. The recovered panels will be sent to the waste processing unit.					
C2 – Transportation	50km by road has been modelled for module C2 as a typical distance from the demolition site to the recycling plant. However, end-users of the EPD can use this information to calculate the impacts of a bespoke transport distance for module C2 if required.	Fuel per km	0.267			
	Transportation	Road transport	Lorry, 16-32 metric ton			
	Distance	km	50			
C2 Wasta	The end-of-life scenario for the cladding panels will depend on their durability. If the panels are in good condition, they can be reclaimed and reused in other construction projects. However, in most cases, panels cannot be recovered with 100% durability. Therefore, in this scenario, a 100% product will be recovered from the demolition site and 90% of the product will be recycled and 10% sent to landfill (EN 15804+A2 PN514 Rev 3.1 - referenced the External wall Cladding panel scenario).					
C3- Waste processing	The recovered panels can be crushed into aggregate or powder and used as a component in concrete or for flooring purposes. During the pre-processing, it is assumed that 10% of the product cannot be recovered and will end up in landfills.					
	The energy used for processing the recovered steel is not included in module C3, it is assumed to be very small and are effectively negligible.					
	Cladding panel waste	kg	0.9			
C4 – Disposal	10% of the product cannot be recovered and will end up in landfills.kg0.1					

Scenarios ano	

Scenario	Parameter	Units	Results		
	"Benefits and loads beyond the system boundary" (module D) accounts for the environmental benefits and loads resulting from the recycling of panels. Since the panels are made of materials such as marble, slate powder, resins, etc., it is assumed that 90% of the product will be recycled at the waste processing unit. The recovered panels will then be reused in various building applications.				
Module D	To calculate the benefits of recycling the panels, the pre-existing content should be ex- from the calculation. While checking the backend ecoinvent 3.8 database for the re- content, the datasets resulted in values of less than 0.001 kg, which is minimal and considered negligible.				

Interpretation of results:

The manufacture of the raw materials has the greatest influence across all impact categories, including the manufacture of the bespoke thermoset polymer-based material, the glass fibers, pigments, etc. Out of the total mass of input materials, crushed marble and stone fillers accounts for 40-45%, Fire Retardant 1* accounts for 30-35%, bespoke thermoset polymer-based material for 15-20%, and the remaining input materials make up the remaining 0-15%.

*Fire Retardant 1 and Stone Filler 1 information not shown on EPD but disclosed for LCA purposes only.

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A2:2019. London, BSI, 2019.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.

BRE Global Product Category Rules (PCR) For Type III EPD of Construction Products to EN 15804+A2, PN 514 Rev 3.1, Feb 2023.

BS EN 14617-2 Agglomerated stone - Test methods - Part 2: Determination of flexural strength (bending)

BS EN 14617-5 Agglomerated stone. Test methods - Determination of freeze and thaw resistance